
Estudo Preliminar de Restarts para Algoritimos de CSP
Preliminary Study on Restarts for CSP Algorithms

Luís Baptista
Escola Superior de Tecnologia e Gestão – IPP

lmtb@estgp.pt

Resumo
O uso de técnicas de restarts para resolver problemas de satisfação de restrições (CSPs),
utilizando algoritmos de procura com retrocesso, é considerado pouco importante. Neste artigo
propomos conduzir um estudo preliminar sobre o impacto da utilização de restarts nestes
algoritmos. Mostramos que o conhecido problema da n-rainhas tem uma distribuição heavy-tail.
Apresentamos evidências empíricas de que os restarts podem efectivamente melhorar o tempo
necessário para encontrar a solução das n-rainhas. Implementamos ainda uma heurística de
decisão baseada em conflitos e mostramos empiricamente que esta heurística, em conjunto com
os restarts, melhora ainda mais o tempo de execução dos algoritmos.

Palavras chave: procura; restrições; restarts; aleatório; heurística

Keywords: search; constraint; restart; randomization; heuristic

1 Introdução

O Problema da Satisfação de Restrições (CSP - Constraint Satisfaction Problem)
é um conhecido caso de problema NP-Completo [1]. As suas aplicações estendem-se
por áreas como escalonamento, configuração, horários, alocação de recursos,
matemática combinatória, jogos e puzzles, e muitos outros campos da informática e da
engenharia em geral.

Neste artigo conduzimos um estudo preliminar sobre o impacto da utilização de
restarts (reiniciar o algoritmo) em algoritmos aleatorizados de procura com retrocesso
para resolver CSPs. Usamos instâncias do conhecido problema das n-rainhas para
mostrar:
─ O tempo de execução para encontrar a solução do problema das n-rainha tem uma

distribuição heavy-tail;
─ Aplicar restarts ao algoritmo, em conjunto com técnicas consideradas estado-da-

arte, melhora o comportamento geral do algoritmo significativamente;
─ A utilização de uma heurística baseada nos conflitos é melhor que tradicional, e

largamente utilizada, heurística baseada no princípio falhar-primeiro.
Os algoritmos de procura com retrocesso são extensamente utilizados para

resolver CPSs. É geralmente aceite que estes algoritmos devem incorporar técnicas

avançadas de redução do espaço de procura, e.g., consistência de domínios. Além
destas, a utilização de heurísticas baseadas no princípio de falhar-primeiro [2] é de
grande importância para encontrar de forma eficiente a solução para CSPs. Mas, a
utilização de técnicas de restarts é considerada de pouca importância para os algoritmos
de procura com retrocesso. Como consequência os restarts não são standard nos solvers
considerados estado-da-art.

A área dos problemas de satisfação de restrições e a área dos problemas de
solvabilidade proposicional (SAT) partilham muitas técnicas [3]. Em SAT o uso de
restarts é uma técnica standard em solvers considerados estado-da-arte. Os restarts
foram essenciais na resolução eficiente de instâncias de SAT, difíceis e do mundo real
[4, 5].

Neste artigo propomo-nos conduzir um estudo preliminar sobre o impacto dos
restarts em algoritmos aleatorizados de procura com retrocesso para resolver CSPs.
Propomos ainda uma heurística baseada em conflitos que é independente do problema a
ser resolvido. Esta heurística usa informação de diferentes restarts (diferentes partes da
árvore de procura). É ainda feito um estudo preliminar sobre o impacto de usar
informação dos restarts passados, usando a heurística baseada em conflictos.

Este estudo preliminar sobre o impacto dos restarts baseia-se em instâncias do
conhecido problema das n-rainhas. Este é um problema muito estudado [6], e tem sido
usado para ilustrar várias técnicas utilizadas em algoritmos para resolver CSPs. [7]. Na
resolução deste problema a aplicação de consistência de domínios e de heurística
baseada no princípio de falhar-primeiro é crucial. Estas instâncias são por isso um bom
ponto de partida para estudar o potencial dos restarts.

2 Problema da satisfação de restrições

2.1 Definições

O Problema da Satisfação de Restrições (CSP) é definido por um conjunto de
variávies, cada uma com um domínio de valores possíveis e um conjunto de restrições
sobre um subconjunto dessas variáveis.

Baseado em [8, 1], definimos mais formalmente um CSP. Consideremos o
conjunto de variáveis { }nxxX ,,1 K= e os respectivos domínios { }nddD ,,1 K= associados

a cada variável. Cada variável ix pode tomar valores do domínio id , não vazio.

Consideremos agora o conjunto de restrições { }mccC ,,1 K= sobre as variáveis X . Cada

restrição ic envolve um subconjunto 'X de X , definindo as possíveis combinações de

valores das variáveis em 'X . Se a cardinalidade do conjunto 'X é 1 dizemos que a
restrição é unária, e se a cardinalidade é 2 dizemos que a restrição é binária. Portanto,
um CSP é um conjunto X de variáveis, o respectivo domínio D , e um conjunto C de
restrições.

É ainda importante definir o que é uma solução para o CSP. O estado do
problema, é uma atribuição de valores a algumas (não necessariamente todas) variáveis.

Como exemplo considere a atribuição { }jjii vxvx == , , onde kv é um valor do domínio

kd atribuído à variável kx , para nk ≤≤1 . Uma atribuição é completa se todas as

variáveis do problema têm valor atribuído (dizem-se instanciadas). Uma atribuição que
satisfaz todas as restrições (não viola as restrições) diz-se consistente. Caso contrário,
diz-se inconsistente. Uma solução para o CSP é uma atribuição complete e consistente.
Um problema é satisfeito se existe pelo menos uma solução. Mais formalmente, se
existe pelo menos um elemento do conjunto ndd ××K1 que é uma atribuição consistente.

Um problema é não satisfeito se não tem solução. Mas formalmente, se todos os
elementos do conjunto ndd ××K1 são atribuições inconsistentes. Resolver um problema

de CSP é encontrar uma solução ou provar que nenhuma solução existe.
Neste artigo utilizamos um CSP com domínios finitos.
O Problema da Solvabilidade Proposicional (SAT) é um caso particular de um

CSP onde as variáveis são booleanas. As restrições são definidas por uma fórmula do
cálculo proposicional expressa na forma normal conjuntiva (CNF).

2.2 Algoritmos de procura

Os algoritmos de procura utilizados para resolver CSPs podem ser completos ou
incompletos. Os algoritmos completos garantem que encontram uma solução, se pelo
menos uma existir. Se não existir solução o algoritmo completo pode ser usado para o
provar. A procura com retrocesso é um exemplo de um algoritmo completo. Os
algoritmos incompletos não conseguem provar que um CSP não tem solução, mas são
eficazes em encontrar uma solução, se pelo menos uma existir. A procura local é um
exemplo de um algoritmo incompleto.

Os algoritmos de procura com retrocesso fazem uma pesquisa na árvore de
procura em profundidade-primeiro. Em cada nó da árvore é escolhida uma variável
ainda não instanciada e o nó é expandido. A expansão de um nó consiste em criar vários
ramos a partir desse nó. Cada ramo corresponde a atribuir à variável um dos valores
possíveis do deu domínio. As restrições são usadas para verificar se as atribuições são
consistentes.

Em cada nó da árvore de procura é aplicada uma importante técnica de redução do
espaço de procura, conhecida como propagação de restrições. Esta permite melhorar a
eficiência do algoritmo mantendo consistência local. Esta técnica consegue retirar,
durante a procura, valores inconsistentes dos domínios das variáveis, e assim, reduzir o
espaço de procura. De notar ainda que as bastante importantes heurísticas para selecção
de variáveis podem depender dos resultados do mecanismo de propagação de restrições.
A heurística de selecção de variável baseada no princípio de falhar-primeiro é um

exemplo. Em cada nó da árvore de procura esta heurística escolhe a variável que tem o
domínio de menor tamanho (menor número de valores no domínio). Esta heurística é
dinâmica, uma vez que o mecanismo de propagação de restrições, ao retirar valores
inconsistentes dos domínios vai influenciar a escolha da próxima variável.

3 Restarts

3.1 Aleatorização

A aleatorização é uma forma de tornar o algoritmo não–determinístico pela
introdução de processos aleatórios. É essencial em muitos algoritmos de procura local
para resolver problemas combinatórios difíceis [9, 10]. Muitos dos algoritmos de
procura local reiniciam repetidamente a procura (restart) através da geração aleatória de
atribuições completas. A aleatorização pode ainda ser utilizada para decidir entre
diferentes estratégias de procura local [11].

Um algoritmo completo de procura com retrocesso é aleatorizado pela introdução
de uma determinada quantidade de aleatoriedade na heurística de decisão [12]. A
quantidade de aleatorização pode afectar o valor que é escolhido para a variável e qual a
variável que é escolhida, de entre as melhores, segundo o valor da heurística.

A introdução de aleatoriedade na heurística de decisão torna pouco provável
escolher a variável errada, o valor errado, no momento errado para a instância errada. A
aleatorização ajuda a reduzir a probabilidade desta situação ocorrer.

Embora intimamente ligada com a aleatoriedade da heurística de decisão, a
aleatorização é um aspecto central das estratégias de restarts [12]. A aleatorização faz
com que diferentes sub-árvores sejam pesquisadas sempre que é feito um restart ao
algoritmo de procura.

3.2 Heavy-tail

Para muitos problemas combinatórios, diferentes algoritmos de procura completos
podem exibir comportamentos bastante diferentes quando aplicados à mesma instância.
Por exemplo, um algoritmo pode necessitar apenas de poucos segundos para concluir,
enquanto outro pode precisar de horas. O mesmo pode acontecer para algoritmos de
procura com retrocesso aleatorizados. Significa que para a mesma instância, diferentes
execuções do algoritmo podem resultar em tempos de execução muito diferentes.

Fig. 1. Exemplo de uma distribuição heavy-tail típica

Esta imprevisibilidade no tempo de execução dos algoritmos de procura
completos pode ser explicada pelo fenómeno da distribuição heavy-tail [13]. Isto
significa que, aquando da execução do algoritmo de procura aleatorizado, existe uma
probabilidade não negligenciada dessa execução necessitar exponencialmente mais
tempo do que qualquer outra execução anterior. Isto faz com que o tempo médio das
execuções do algoritmo aumente com o número de execuções, e no limite seja infinito
[12].

A figura 1 mostra um exemplo de uma distribuição heavy-tail típica. A curva
mostra a percentagem cumulativa de execuções com sucesso em função do número de
retrocessos [14]. Este exemplo foi construído para uma instância de SAT particular, a
partir de 10000 execuções de um algoritmo de procura com retrocesso aleatorizado. A
distribuição heavy-tail é caracterizada por uma cauda longa. Neste exemplo concreto
podemos observar que em 50% das execuções do algoritmo foi possível encontrar a
solução com menos de (aproximadamente) 300 retrocessos (a parte esquerda da
distribuição). No entanto 0.7% das execuções do algoritmo não conseguem encontrar
solução ao fim de 10000 retrocessos, ou seja, necessita de mais tempo para encontrar a
solução (a parte direita da distribuição).

A variação dos tempos de execução de métodos de procura aleatorizados foi
profundamente estudada por Gomes et al.[12, 14, 13].

3.3 Estratégias de restarts

Uma possível estratégia de restarts consiste em definir um valor limite (cutoff)
para o número de retrocessos do algoritmo. O algoritmo de procura com retrocesso
aleatorizado é então executado repetidamente, limitando em cada execução o número
máximo de retrocessos ao valor do cutoff. Na prática, um adequado valor de cutoff
elimina o fenómeno heavy-tail. No entanto, esse valor só pode ser encontrado
empiricamente. [12].

Se os restarts forem usados com um valor fixo de cutoff o algoritmo resultante não
é completo. Embora o algoritmo resultante possa ter alguma probabilidade de resolver a
instância, pode não ser capaz de provar que a instância não tem solução, é não satisfeita.
A solução para este problema é incrementar o valor de cutoff [15]. Uma estratégia
simples é incrementar o valor de cutoff por uma constante, a seguir a cada restarts. O
algoritmo resultante é completo e portanto capaz de provar que uma instância é não
satisfeita [4]. De notar que esta abordagem se assemelha à procura em profundidade
primeira iterativa.

No entanto, a estratégia de incrementar o cutoff tem uma desvantagem importante,
uma vez que os caminhos da árvore de procura podem ser visitados mais do que uma
vez, em diferentes restarts. Este problema foi abordado para SAT em [16], onde são
registados nogoods, do último ramo da árvore de procura, antes do restarts. Mais
recentemente a mesma ideia foi também aplicada a CSP [17, 18]. Este registo de
nogoods é também conhecido como aprendizagem.

Como referido recentemente em [19], o progresso impressionante dos algoritmos
de SAT, aos contrário dos de CSP, deveu-se ao uso de restarts e do registo de nogoods
(e ainda ao uso de estruturas de dados lazy eficientes). Este facto está a estimular o
interesse da comunidade de CSPs em restarts e nogoods.

4 Resultados experimentais

Este secção apresenta e analisa os resultados experimentais do impacto dos
restarts na resolução de várias instâncias do problema das n-rainhas. Em primeiro lugar
começamos por definir o modelo usado para representar o problema da n-rainhas, e
discutir a distribuição heavy-tail que este problema exibe.

A implementação do modelo das n-rainhas e dos algoritmos usados no estudo
empírico foi feita com o solver de programação por restrições em domínios finitos do
sistema Comet (http://www.comet-online.org).

4.1 O problema da n-rainhas

O exemplo clássico usado para ilustrar o problema da satisfação de restrições é o
problema das n-rainhas. O objectivo é colocar n rainhas num tabuleiro de Xadrez n×n
tal que nenhuma rainha ataque outra.

Uma possível formulação para o problema é a seguinte: considerar uma variável
para cada coluna do tabuleiro x1, …, xn; o domínio das variáveis são as linhas onde as
rainhas podem ser colocadas di={1, …, n}; e as restrições, para todos os possíveis pares
de colunas (rainhas), são que as duas rainhas não podem partilhar a mesma linha nem as
mesmas diagonais. Uma propriedade interessante desta formulação é que o número de

variáveis é sempre o mesmo que o número de valores nos domínios. Esta é formulação
utilizada para modelar o problema das n-rainhas.

É usada a restrição global alldifferent para implementar as restrições do problema:
─ todas as rainhas têm que ser colocadas em linhas diferentes alldifferent(x1, x2,

…, xn)
─ todas as rainhas têm que ser colocadas em diagonais diferentes

alldifferent(x1+1, x2+2, …, xn+n)
alldifferent(x1-1, x2-2, …, xn-n)

4.2 Distribuição heavy-tail

A distribuição heavy-tail da figura 2 foi criada com 872649 execuções de um
algoritmo de procura com retrocesso aleatorizado para resolver o problema das 8-
rainhas. Este algoritmo não usa propagação de restrições nem heurísticas de decisão.
Simplesmente selecciona a próxima variável de forma aleatória.

Fig. 2. Distribuição heavy-tail para as 8-rainhas

Como podemos observar, o problema das 8-rainhas tem uma distribuição heavy-
tail. Admitamos que podemos generalizar esta observação para todas as instâncias do
problema das n-rainhas. Isto significa que o algoritmo de procura com retrocesso
aleatorizado, utilizando uma estratégia de restarts, pode resolver todas as instâncias das
n-rainhas.

4.3 Restarts

Nesta secção usamos como configuração base para todos os testes um algoritmo
de procura com retrocesso, com propagação de restrições e uma heurística baseada no
princípio de falhar-primeiro (FF). Para os resultados experimentais usámos os seguintes
algoritmos:

─ BT, algoritmo com a configuração base.
─ BT+Rand, configuração base e escolha aleatória entre os possíveis valores da

variável.
─ BT+Rst, configuração base, escolha aleatória entre as variáveis com os três

melhores valores (de acordo com a heurística FF), e restarts (valor inicial do cutoff
é 1; o incremento do valor de cutoff a seguir a cada restart é 10).

Os resultados de executar os algoritmos são expressos no número de retrocessos
necessários para encontrar a solução. Para cada execução foi definido um limite de
500000 retrocessos. Uma vez que foi utilizada aleatorização nos dois últimos
algoritmos, eles foram executados 10 vezes para cada instância. Por isso, nestes casos,
os resultados apresentados correspondem à média das 10 execuções.

Tabela 1. Resultados para diferentes instâncias (com diferentes n rainhas)

n BT BT+Rand BT+Rst
100 29 58,8 84,2
200 200217 35525,9 63,1
500 (1) 5791,8 352,7

1000 2
103460,4

(2) 846,2

1500 4265
100310,2

(2) 2069,0
2000 (1) 50003,6 (1) 857,2

Na tabela 1, os valores entre parêntesis representam o número de vezes que o

limite de retrocessos foi atingido (sem encontrar a solução)
Como podemos observar os resultados da tabela 1 expõem o poder da utilização

de restarts:
─ Com restarts o algoritmo resolve todas as instâncias.
─ Com restarts o algoritmo resolve as instâncias mais difíceis (maiores) de forma

mais eficiente (necessita de menos retrocessos).
─ Sem restarts os algoritmos apresentam tempos (retrocessos) de execução grandes,

devido à distribuição heavy-tail. Mas, utilizando restarts, a longa cauda da
distribuição heavy-tail é evitada.
Com restarts é possível, de forma mais eficiente, encontrar a solução de instâncias

mais difíceis. Provavelmente isto acontece porque as instâncias têm uma distribuição
heavy-tail.

4.4 Heurística baseada em conflitos

Em SAT, as heurísticas de decisão mais importantes são baseadas no registo de
cláusulas de conflito (registo de nogoods) [5]. A ideia geral destas heurísticas é

incrementar o valor dos literais que estão envolvidos no conflito. A heurística
selecciona a variável que está envolvida em mais conflitos.

Implementamos uma heurística que utiliza um contador para cada variável.
Quando o algoritmo não tem mais valores para atribuir a uma variável (conflito) o
contador dessa variável é incrementado de uma unidade. Esta heurística selecciona a
variável que esteve envolvida em mais conflitos, desempatando com a heurística FF.

Tabela 2. Resultados para a heurística baseada em conflictos

n BT+Rst BT+Rst+Conf
100 84,2 30,9
200 63,1 142,0
500 352,7 126,2
1000 846,2 197,8
1500 2069,0 268,5
2000 857,2 213,8

O novo algoritmo testado, BT+Rst+Conf adiciona aos restarts a heurística

baseada nos conflitos. Como pode ser observado, esta heurística permite melhorar,
excepto num caso, o comportamento do algoritmo (diminui o número de retrocessos
necessário para encontrar a solução para o algoritmo). Nestas instâncias, esta nova
heurística é melhor que a tradicional heurística baseada no princípio de falhar-primeiro.

Em [5] os contadores são periodicamente divididos por um valor constante, mas
na nossa implementação não dividimos os contadores. Esta pode ser a razão que explica
porque em algumas instâncias esta heurística tem um comportamento pior. No entanto
esta heurística apresenta resultados promissores.

5 Conclusões

Este artigo apresenta um estudo preliminar sobre restarts aplicados a um CSP, as
n-rainhas. Os restarts não têm sido considerados úteis para melhorar os algoritmos de
procura com retrocesso para CSP, e por isso não são standard nestes algoritmos. Este
estudo contribui para contradizer esta ideia, mostrando:
─ Os restarts podem efectivamente melhorar o tempo de execução necessário para

resolver o problema das n-rainhas.
─ Uma heurística baseada em conflitos (e usando restarts) melhora ainda mais o

tempo de execução necessário para resolver o problema das n-rainhas.
Os restarts não substituem outras técnicas, como propagação de restrições e

heurísticas, mas complementam-nas tornando os algoritmos mais eficientes.

Os progressos em SAT foram devidos à utilização de restarts e nogoods. Agora
em CSP os restarts e os nogoods começam a ser uma área de investigação bastante
promissora. [19].

No futuro próximo esperamos:
─ Confirmar os resultados com outras instâncias de CSPs (problemas reais e também

gerados aleatoriamente).
─ Incluir no estudo o registo de nogoods (aprendizagem).
─ Estudar a interacção de outras técnicas com os Restarts.

6 Referências

Apt, K.R.: Principles of constraint programming, Cambridge University Press (2003).

Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems.
Proceedings of the 6th international joint conference on Artificial intelligence. pp. 356-364
Morgan Kaufmann Publishers Inc., Tokyo, Japan (1979).

Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional Satisfiability and Constraint Programming: A
comparative survey, ACM Comput. Surv., vol. 38, 2006, p. 12.

Baptista, L., Silva, J.P.M.: Using Randomization and Learning to Solve Hard Real-World Instances of
Satisfiability. Proceedings of the 6th International Conference on Principles and Practice of
Constraint Programming. pp. 489-494 Springer-Verlag (2000).

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT
solver. Proceedings of the 38th annual Design Automation Conference. pp. 530-535 ACM, Las
Vegas, Nevada, United States (2001).

Bell, J., Stevens, B.: A survey of known results and research areas for n-queens, Discrete Mathematics,
vol. 309, Jan. 2009, pp. 1-31.

Rossi, F., Beek, P.V., Walsh, T.: Handbook of constraint programming, Elsevier (2006).

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Prentice Hall (2002).

Selman, B., Kautz, H.: Domain-independent extensions to GSAT: solving large structured satisfiability
problems. Proceedings of the 13th international joint conference on Artifical intelligence -
Volume 1. pp. 290-295 Morgan Kaufmann Publishers Inc., Chambery, France (1993).

Hoos, H.H., Stützle, T.: Stochastic local search: foundations and applications, Morgan Kaufmann (2005).

McAllester, D., Selman, B., Kautz, H.A.: Evidence for Invariants in Local Search, 1997.

Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. Proceedings
of the fifteenth national conference on Artificial intelligence. pp. 431-437 American Association
for Artificial Intelligence, Madison, Wisconsin, United States (1998).

Gomes, C., Selman, B., Crato, N.: Heavy-Tailed Distributions in Combinatorial Search, Principles and
Practices of Constraint Programming, 1997, pp. 121-135.

Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-Tailed Phenomena in Satisfiability and Constraint
Satisfaction Problems, Journal of Automated Reasoning, vol. 24, 2000, pp. 67-100.

Walsh, T.: Search in a Small World. Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence. pp. 1172-1177 Morgan Kaufmann Publishers Inc. (1999).

Baptista, L., Lynce, I., Marques-Silva, J.: Complete Search Restart Strategies for Satisfiability, IJCAI
Workshop on Stochastic Search Algorithms (IJCAI-SSA), 2001.

Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. Proceedings of the 20th
international joint conference on Artifical intelligence. pp. 131-136 Morgan Kaufmann Publishers
Inc., Hyderabad, India (2007).

Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Recording and Minimizing Nogoods from Restarts, Journal
on Satisfiability, Boolean Modeling and Computation, vol. 1, 2007, pp. 147–167.

Lecoutre, C.: Constraint Networks: Techniques and Algorithms, Wiley-ISTE (2009).

