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Resumo

O uso de técnicas de restarts para resolver problemas de satisfacdo de restricdes (CSPs),
utilizando algoritmos de procura com retrocesso, é considerado pouco importante. Neste artigo
propomos conduzir um estudo preliminar sobre o impacto da utilizacdo de restarts nestes
algoritmos. Mostramos que o conhecido problema da n-rainhas tem uma distrit@ag@idail
Apresentamos evidéncias empiricas de que os restarts podem efectivamente melhorar o tempo
necessario para encontrar a solu¢cdo das n-rainhas. Implementamos ainda uma heuristica de
decisdo baseada em conflitos e mostramos empiricamente que esta heuristica, em conjunto com
os restarts, melhora ainda mais o tempo de execucao dos algoritmos.
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1 Introducéao

O Problema da Satisfacdo de Restricbes (CSenstraint Satisfaction Problem
€ um conhecido caso de problema NP-Completo [1]. As suas aplicacfes estendem-se
por areas como escalonamento, configuracdo, horarios, alocacdo de recursos,
matematica combinatdria, jogos e puzzles, e muitos outros campos da informatica e da
engenharia em geral.

Neste artigo conduzimos um estudo preliminar sobre o impacto da utilizagdo de
restarts (reiniciar o algoritmo) em algoritmos aleatorizados de procura com retrocesso
para resolver CSPs. Usamos instancias do conhecido problema das n-rainhas para
mostrar:

— O tempo de execucao para encontrar a solugao do problema das n-rainha tem uma
distribuicdo heavy-tail

— Aplicar restarts ao algoritmo, em conjunto com técnicas consideradas estado-da-
arte, melhora o comportamento geral do algoritmo significativamente;

— A utilizacdo de uma heuristica baseada nos conflitos € melhor que tradicional, e
largamente utilizada, heuristica baseada no principio falhar-primeiro.

Os algoritmos de procura com retrocesso sao extensamente utilizados para
resolver CPSs. E geralmente aceite que estes algoritmos devem incorporar técnicas



avancadas de reducdo do espago de procura, e.g., consisténcia de dominios. Além
destas, a utilizacdo de heuristicas baseadas no principio de falhar-primeiro [2] € de
grande importancia para encontrar de forma eficiente a solucdo para CSPs. Mas, a
utilizacdo de técnicas de restarts € considerada de pouca importancia para os algoritmos
de procura com retrocesso. Como consequéncia os restarts ndo sao starstdvensos
considerados estado-da-art.

A area dos problemas de satisfacdo de restricbes e a area dos problemas de
solvabilidade proposicional (SAT) partilham muitas técnicas [3]. Em SAT o uso de
restarts € uma técnica standard saivers considerados estado-da-arte. Os restarts
foram essenciais na resolucéo eficiente de instancias de SAT, dificeis e do mundo real
[4, 5].

Neste artigo propomo-nos conduzir um estudo preliminar sobre o impacto dos
restarts em algoritmos aleatorizados de procura com retrocesso para resolver CSPs.
Propomos ainda uma heuristica baseada em conflitos que é independente do problema a
ser resolvido. Esta heuristica usa informacao de diferentes restarts (diferentes partes da
arvore de procura). E ainda feito um estudo preliminar sobre o impacto de usar
informacao dos restarts passados, usando a heuristica baseada em conflictos.

Este estudo preliminar sobre o impacto dos restarts baseia-se em instancias do
conhecido problema das n-rainhas. Este é um problema muito estudado [6], e tem sido
usado para ilustrar varias técnicas utilizadas em algoritmos para resolver CSPs. [7]. Na
resolucdo deste problema a aplicacdo de consisténcia de dominios e de heuristica
baseada no principio de falhar-primeiro € crucial. Estas instancias sao por isso um bom
ponto de partida para estudar o potencial dos restarts.

2 Problema da satisfacao de restricoes
2.1 Defini¢coes

O Problema da Satisfacdo de Restricbes (CSP) é definido por um conjunto de
variavies, cada uma com um dominio de valores possiveis e um conjunto de restricdes
sobre um subconjunto dessas variaveis.

Baseado em [8, 1], definimos mais formalmente um CSP. Consideremos o
conjunto de variadveix ={x_...,x,} € 0s respectivos dominias={d,.,...,d,} associados

a cada variavel. Cada variavel pode tomar valores do dominig, ndo vazio.
Consideremos agora o conjunto de restricGegc,.....c,} sobre as variaveis . Cada
restricdoc, envolve um subconjunta' de x, definindo as possiveis combinac¢des de

valores das variaveis emr'. Se a cardinalidade do conjunto é 1 dizemos que a
restricdo é unaria, e se a cardinalidade é 2 dizemos que a restricdo € binaria. Portanto,
um CSP é um conjunta de variaveis, o respectivo dominip, € um conjuntaC de
restricoes.



E ainda importante definir o que € uma solucdo para o CSP. O estado do
problema, é uma atribuicdo de valores a algumas (ndo necessariamente todas) variaveis.

Como exemplo considere a atribuiclio=v,x =v;}, ondev, é um valor do dominio

by 7

d, atribuido a variavelx,, parai<ks<n. Uma atribuicdo é completa se todas as

variaveis do problema tém valor atribuido (dizem-se instanciadas). Uma atribuicdo que
satisfaz todas as restricbes (ndo viola as restricdes) diz-se consistente. Caso contrario,
diz-se inconsistente. Uma solucéo para o CSP é uma atribuicdo complete e consistente.
Um problema é satisfeito se existe pelo menos uma solucdo. Mais formalmente, se
existe pelo menos um elemento do conjufito..xd, que € uma atribuicdo consistente.

Um problema é nado satisfeito se ndo tem solucdo. Mas formalmente, se todos os
elementos do conjunta, x...xd,, S&o atribuicdes inconsistentes. Resolver um problema

de CSP é encontrar uma solugéo ou provar que nenhuma solucao existe.

Neste artigo utilizamos um CSP com dominios finitos.

O Problema da Solvabilidade Proposicional (SAT) é um caso particular de um
CSP onde as variaveis sao booleanas. As restricbes sédo definidas por uma férmula do
calculo proposicional expressa na forma normal conjuntiva (CNF).

2.2 Algoritmos de procura

Os algoritmos de procura utilizados para resolver CSPs podem ser completos ou
incompletos. Os algoritmos completos garantem que encontram uma solucdo, se pelo
menos uma existir. Se nao existir solucdo o algoritmo completo pode ser usado para o
provar. A procura com retrocesso € um exemplo de um algoritmo completo. Os
algoritmos incompletos ndo conseguem provar que um CSP ndo tem solucdo, mas sao
eficazes em encontrar uma solucdo, se pelo menos uma existir. A procura local é um
exemplo de um algoritmo incompleto.

Os algoritmos de procura com retrocesso fazem uma pesquisa na arvore de
procura em profundidade-primeiro. Em cada né da arvore é escolhida uma variavel
ainda ndo instanciada e o no € expandido. A expansdo de um no consiste em criar varios
ramos a partir desse nd. Cada ramo corresponde a atribuir a variavel um dos valores
possiveis do deu dominio. As restricbes sdo usadas para verificar se as atribuicdes sao
consistentes.

Em cada n6 da arvore de procura € aplicada uma importante técnica de reducédo do
espaco de procura, conhecida como propagacao de restricoes. Esta permite melhorar a
eficiéncia do algoritmo mantendo consisténcia local. Esta técnica consegue retirar,
durante a procura, valores inconsistentes dos dominios das variaveis, e assim, reduzir o
espaco de procura. De notar ainda que as bastante importantes heuristicas para seleccéo
de variaveis podem depender dos resultados do mecanismo de propagacéo de restri¢cdes.
A heuristica de seleccdo de variavel baseada no principio de falhar-primeiro ¢ um



exemplo. Em cada n6 da arvore de procura esta heuristica escolhe a variavel que tem o
dominio de menor tamanho (menor nimero de valores no dominio). Esta heuristica é

dindmica, uma vez que o mecanismo de propagacado de restricbes, ao retirar valores
inconsistentes dos dominios vai influenciar a escolha da proxima variavel.

3 Restarts
3.1 Aleatorizagao

A aleatorizacdo € uma forma de tornar o algoritmo nao—deterministico pela
introducéo de processos aleatérios. E essencial em muitos algoritmos de procura local
para resolver problemas combinatérios dificeis [9, 10]. Muitos dos algoritmos de
procura local reiniciam repetidamente a procura (restart) através da geracao aleatoria de
atribuicdbes completas. A aleatorizacdo pode ainda ser utilizada para decidir entre
diferentes estratégias de procura local [11].

Um algoritmo completo de procura com retrocesso € aleatorizado pela introducao
de uma determinada quantidade de aleatoriedade na heuristica de decisdo [12]. A
quantidade de aleatorizacdo pode afectar o valor que é escolhido para a variavel e qual a
variavel que é escolhida, de entre as melhores, segundo o valor da heuristica.

A introducdo de aleatoriedade na heuristica de decisdo torna pouco provavel
escolher a variavel errada, o valor errado, no momento errado para a instancia errada. A
aleatorizag&o ajuda a reduzir a probabilidade desta situagao ocorrer.

Embora intimamente ligada com a aleatoriedade da heuristica de decisédo, a
aleatorizacdo é um aspecto central das estratégias de restarts [12]. A aleatorizagéo faz
com que diferentes sub-arvores sejam pesquisadas sempre que é feito um restart ao
algoritmo de procura.

3.2 Heawy-tail

Para muitos problemas combinatérios, diferentes algoritmos de procura completos
podem exibir comportamentos bastante diferentes quando aplicados a mesma instancia.
Por exemplo, um algoritmo pode necessitar apenas de poucos segundos para concluir,
enquanto outro pode precisar de horas. O mesmo pode acontecer para algoritmos de
procura com retrocesso aleatorizados. Significa que para a mesma instancia, diferentes
execucdes do algoritmo podem resultar em tempos de execucdo muito diferentes.



Fig. 1. Exemplo de uma distribuicdo heavy-tgica

Esta imprevisibilidade no tempo de execucdo dos algoritmos de procura
completos pode ser explicada pelo fendmeno da distribthe@wy-tail [13]. Isto
significa que, aquando da execucédo do algoritmo de procura aleatorizado, existe uma
probabilidade ndo negligenciada dessa execucdo necessitar exponencialmente mais
tempo do que qualquer outra execucdo anterior. Isto faz com que o tempo médio das
execucdes do algoritmo aumente com o numero de execucgdes, e no limite seja infinito
[12].

A figura 1 mostra um exemplo de uma distribui¢@avy-tail tipica. A curva
mostra a percentagem cumulativa de execu¢des com sucesso em funcdo do nimero de
retrocessos [14]. Este exemplo foi construido para uma instancia de SAT particular, a
partir de 10000 execucdes de um algoritmo de procura com retrocesso aleatorizado. A
distribuicAoheavy-tail € caracterizada por uma cauda longa. Neste exemplo concreto
podemos observar que em 50% das execucdes do algoritmo foi possivel encontrar a
solugdo com menos de (aproximadamente) 300 retrocessos (a parte esquerda da
distribuicdo). No entanto 0.7% das execuc¢bes do algoritmo ndo conseguem encontrar
solugéo ao fim de 10000 retrocessos, ou seja, necessita de mais tempo para encontrar a
solugéo (a parte direita da distribuic&o).

A variacdo dos tempos de execucdo de meétodos de procura aleatorizados foi
profundamente estudada por Gomes et al.[12, 14, 13].

3.3 Estratégias de restarts

Uma possivel estratégia de restarts consiste em definir um valor louitef)(
para o numero de retrocessos do algoritmo. O algoritmo de procura com retrocesso
aleatorizado é entdo executado repetidamente, limitando em cada execu¢do o numero
maximo de retrocessos ao valor datoff Na pratica, um adequado valor detoff
elimina o fendmeno heavy-tail. No entanto, esse valor s6 pode ser encontrado
empiricamente. [12].



Se o0s restarts forem usados com um valor fixo de cutfjoritmo resultante néo
€ completo. Embora o algoritmo resultante possa ter alguma probabilidade de resolver a
instancia, pode néo ser capaz de provar que a instancia ndo tem solucéo, € néo satisfeita.
A solucéo para este problema é incrementar o valotutieff [15]. Uma estratégia
simples € incrementar o valor datoff por uma constante, a seguir a cada restarts. O
algoritmo resultante € completo e portanto capaz de provar que uma instancia € nao
satisfeita [4]. De notar que esta abordagem se assemelha a procura em profundidade
primeira iterativa.

No entanto, a estratégia de incrementantofftem uma desvantagem importante,
uma vez que os caminhos da arvore de procura podem ser visitados mais do que uma
vez, em diferentes restarts. Este problema foi abordado para SAT em [16], onde séo
registadosnogoods do ultimo ramo da arvore de procura, antes do restarts. Mais
recentemente a mesma ideia foi também aplicada a CSP [17, 18]. Este registo de
nogoodse também conhecido como aprendizagem.

Como referido recentemente em [19], o progresso impressionante dos algoritmos
de SAT, aos contrario dos de CSP, deveu-se ao uso de restarts e do registo de nogoods
(e ainda ao uso de estruturas de dddpy eficientes). Este facto esta a estimular o
interesse da comunidade de CSPs em restarts e nogoods.

4  Resultados experimentais

Este seccdo apresenta e analisa os resultados experimentais do impacto dos
restarts na resolucdo de vérias instancias do problema das n-rainhas. Em primeiro lugar
comecamos por definir o modelo usado para representar o problema da n-rainhas, e
discutir a distribuicdo heavy-tajue este problema exibe.

A implementacdo do modelo das n-rainhas e dos algoritmos usados no estudo
empirico foi feita com o solver de programacéao por restricdes em dominios finitos do
sistema Comet(tp://www.comet-online.org

4.1 O problema da n-rainhas

O exemplo classico usado para ilustrar o problema da satisfacao de restricées é o
problema das n-rainhas. O objectivo é colataainhas num tabuleiro de Xadrezn
tal que nenhuma rainha ataque outra.

Uma possivel formulacédo para o problema é a seguinte: considerar uma variavel
para cada coluna do tabuleiq ..., x,; 0 dominio das variaveis sdo as linhas onde as
rainhas podem ser colocad#is{1, ..., n}; e as restricdes, para todos 0s possiveis pares
de colunas (rainhas), sdo que as duas rainhas ndo podem partilhar a mesma linha nem as
mesmas diagonais. Uma propriedade interessante desta formulacdo é que o numero de



variaveis € sempre 0 mesmo que o humero de valores nos dominios. Esta é formulacao
utilizada para modelar o problema das n-rainhas.
E usada a restricdo global alldiffergrara implementar as restricdes do problema:
—todas as rainhas tém que ser colocadas em linhas difeadidtéerent(x, x,
) %)
—todas as rainhas tém que ser colocadas em diagonais diferentes
alldifferent(x+1, x+2, ..., %+n)
alldifferent(x-1, %-2, ..., X-n)

4.2 Distribuicdo heavy-tail

A distribuicdo heavy-tail da figura 2 foi criada com 872649 execucdes de um
algoritmo de procura com retrocesso aleatorizado para resolver o problema das 8-
rainhas. Este algoritmo ndo usa propagacéo de restricbes nem heuristicas de decisao.
Simplesmente selecciona a proxima variavel de forma aleatoria.

Fig. 2. Distribuicdoheavy-tailpara as 8-rainhas

Como podemos observar, o problema das 8-rainhas tem uma distribe&aoe
tail. Admitamos que podemos generalizar esta observacdo para todas as instancias do
problema das n-rainhas. Isto significa que o algoritmo de procura com retrocesso

aleatorizado, utilizando uma estratégia de restarts, pode resolver todas as instancias das
n-rainhas.

4.3 Restarts

Nesta sec¢cdo usamos como configuragao base para todos os testes um algoritmo
de procura com retrocesso, com propagacao de restricdes e uma heuristica baseada no

principio de falhar-primeiro (FF). Para os resultados experimentais usamos 0s seguintes
algoritmos:



— BT, algoritmo com a configuracéo base.

— BT+Rand, configuracdo base e escolha aleatéria entre os possiveis valores da
variavel.

—BT+Rst, configuragdo base, escolha aleatoria entre as variaveis com o0s trés
melhores valores (de acordo com a heuristica FF), e restarts (valor inicigbéfo
é 1; o incremento do valor de cutaféeguir a cada restart € 10).

Os resultados de executar os algoritmos sdo expressos no numero de retrocessos
necessarios para encontrar a solugdo. Para cada execucdo foi definido um limite de
500000 retrocessos. Uma vez que foi utilizada aleatorizacdo nos dois ultimos
algoritmos, eles foram executados 10 vezes para cada instancia. Por isso, nestes casos,
0s resultados apresentados correspondem a média das 10 execuc¢des.

Tabela 1. Resultados para diferentes instancias (com diferentes n rainhas)

n BT BT+Rand | BT+Rst
100 29 58,8 84,2
200 | 200217/ 35525,9 63,1
500 (1) 5791,8 352,7

103460,4
1000 2 (2) 846,2
100310,2
1500| 4265 (2) 2069,0
2000 (1) 50003,6 (1) 857,2

Na tabela 1, os valores entre paréntesis representam o numero de vezes que 0
limite de retrocessos foi atingido (sem encontrar a solugéo)

Como podemos observar os resultados da tabela 1 expdem o poder da utilizacao
de restarts:

— Com restarts o algoritmo resolve todas as instancias.

— Com restarts o algoritmo resolve as instancias mais dificeis (maiores) de forma
mais eficiente (necessita de menos retrocessos).

— Sem restarts os algoritmos apresentam tempos (retrocessos) de execugdo grandes,
devido a distribuicdoheavy-tail Mas, utilizando restarts, a longa cauda da
distribuicdo heavy-taié evitada.

Com restarts é possivel, de forma mais eficiente, encontrar a solucdo de instancias
mais dificeis. Provavelmente isto acontece porque as instancias tém uma distribuicéo
heavy-tail

4.4 Heuristica baseada em conflitos

Em SAT, as heuristicas de decisdo mais importantes sdo baseadas no registo de
clausulas de conflito (registo de nogoods) [5]. A ideia geral destas heuristicas é



incrementar o valor dos literais que estdo envolvidos no conflito. A heuristica
selecciona a variavel que esta envolvida em mais conflitos.

Implementamos uma heuristica que utiliza um contador para cada variavel.
Quando o algoritmo ndo tem mais valores para atribuir a uma variavel (conflito) o
contador dessa variavel é incrementado de uma unidade. Esta heuristica selecciona a
variavel que esteve envolvida em mais conflitos, desempatando com a heuristica FF.

Tabela 2. Resultados para a heuristica baseada em conflictos

n |BT+Rst|BT+Rst+Conf
100 84,2 30,9
200 63,1 142,0
500 | 352,7 126,2

1000 | 846,2 197,8
1500 | 2069,0 268,5
2000| 857,2 213,8

O novo algoritmo testadoBT+Rst+Conf adiciona aos restarts a heuristica
baseada nos conflitos. Como pode ser observado, esta heuristica permite melhorar,
excepto num caso, o comportamento do algoritmo (diminui o nimero de retrocessos
necessario para encontrar a solugdo para o algoritmo). Nestas instancias, esta nova
heuristica € melhor que a tradicional heuristica baseada no principio de falhar-primeiro.

Em [5] os contadores sao periodicamente divididos por um valor constante, mas
na nossa implementacao nao dividimos os contadores. Esta pode ser a razdo que explica
porque em algumas instancias esta heuristica tem um comportamento pior. No entanto
esta heuristica apresenta resultados promissores.

5 Conclusodes

Este artigo apresenta um estudo preliminar sobre restarts aplicados a um CSP, as
n-rainhas. Os restarts ndo tém sido considerados Uteis para melhorar os algoritmos de
procura com retrocesso para CSP, e por isso ndo sao standard nestes algoritmos. Este
estudo contribui para contradizer esta ideia, mostrando:

— Os restarts podem efectivamente melhorar o tempo de execucdo necessario para
resolver o problema das n-rainhas.

—Uma heuristica baseada em conflitos (e usando restarts) melhora ainda mais o
tempo de execucdo necessario para resolver o problema das n-rainhas.

Os restarts ndo substituem outras técnicas, como propagacdo de restricbes e
heuristicas, mas complementam-nas tornando os algoritmos mais eficientes.



Os progressos em SAT foram devidos a utilizagdo de restadgomds Agora
em CSP os restarts e nsgoodscomecam a ser uma area de investigacdo bastante
promissora. [19].
No futuro proximo esperamos:
— Confirmar os resultados com outras instancias de CSPs (problemas reais e também
gerados aleatoriamente).
— Incluir no estudo o registo de nogodgdprendizagem).
— Estudar a interaccéo de outras técnicas com os Restarts.
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