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Resumo 
O uso de técnicas de restarts para resolver problemas de satisfação de restrições (CSPs), 
utilizando algoritmos de procura com retrocesso, é considerado pouco importante. Neste artigo 
propomos conduzir um estudo preliminar sobre o impacto da utilização de restarts nestes 
algoritmos. Mostramos que o conhecido problema da n-rainhas tem uma distribuição heavy-tail. 
Apresentamos evidências empíricas de que os restarts podem efectivamente melhorar o tempo 
necessário para encontrar a solução das n-rainhas. Implementamos ainda uma heurística de 
decisão baseada em conflitos e mostramos empiricamente que esta heurística, em conjunto com 
os restarts, melhora ainda mais o tempo de execução dos algoritmos. 
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1 Introdução 

O Problema da Satisfação de Restrições (CSP - Constraint Satisfaction Problem) 
é um conhecido caso de problema NP-Completo [1]. As suas aplicações estendem-se 
por áreas como escalonamento, configuração, horários, alocação de recursos, 
matemática combinatória, jogos e puzzles, e muitos outros campos da informática e da 
engenharia em geral. 

Neste artigo conduzimos um estudo preliminar sobre o impacto da utilização de 
restarts (reiniciar o algoritmo) em algoritmos aleatorizados de procura com retrocesso 
para resolver CSPs. Usamos instâncias do conhecido problema das n-rainhas para 
mostrar: 
─ O tempo de execução para encontrar a solução do problema das n-rainha tem uma 

distribuição heavy-tail; 
─ Aplicar restarts ao algoritmo, em conjunto com técnicas consideradas estado-da-

arte, melhora o comportamento geral do algoritmo significativamente; 
─ A utilização de uma heurística baseada nos conflitos é melhor que tradicional, e 

largamente utilizada, heurística baseada no princípio falhar-primeiro. 
Os algoritmos de procura com retrocesso são extensamente utilizados para 

resolver CPSs. É geralmente aceite que estes algoritmos devem incorporar técnicas 



avançadas de redução do espaço de procura, e.g., consistência de domínios. Além 
destas, a utilização de heurísticas baseadas no princípio de falhar-primeiro [2] é de 
grande importância para encontrar de forma eficiente a solução para CSPs. Mas, a 
utilização de técnicas de restarts é considerada de pouca importância para os algoritmos 
de procura com retrocesso. Como consequência os restarts não são standard nos solvers 
considerados estado-da-art. 

A área dos problemas de satisfação de restrições e a área dos problemas de 
solvabilidade proposicional (SAT) partilham muitas técnicas [3]. Em SAT o uso de 
restarts é uma técnica standard em solvers considerados estado-da-arte. Os restarts 
foram essenciais na resolução eficiente de instâncias de SAT, difíceis e do mundo real 
[4, 5]. 

Neste artigo propomo-nos conduzir um estudo preliminar sobre o impacto dos 
restarts em algoritmos aleatorizados de procura com retrocesso para resolver CSPs. 
Propomos ainda uma heurística baseada em conflitos que é independente do problema a 
ser resolvido. Esta heurística usa informação de diferentes restarts (diferentes partes da 
árvore de procura). É ainda feito um estudo preliminar sobre o impacto de usar 
informação dos restarts passados, usando a heurística baseada em conflictos. 

Este estudo preliminar sobre o impacto dos restarts baseia-se em instâncias do 
conhecido problema das n-rainhas. Este é um problema muito estudado [6], e tem sido 
usado para ilustrar várias técnicas utilizadas em algoritmos para resolver CSPs. [7]. Na 
resolução deste problema a aplicação de consistência de domínios e de heurística 
baseada no princípio de falhar-primeiro é crucial. Estas instâncias são por isso um bom 
ponto de partida para estudar o potencial dos restarts. 

 

2 Problema da satisfação de restrições 

2.1 Definições 

O Problema da Satisfação de Restrições (CSP) é definido por um conjunto de 
variávies, cada uma com um domínio de valores possíveis e um conjunto de restrições 
sobre um subconjunto dessas variáveis. 

Baseado em [8, 1], definimos mais formalmente um CSP. Consideremos o 
conjunto de variáveis { }nxxX ,,1 K=  e os respectivos domínios { }nddD ,,1 K=  associados 

a cada variável. Cada variável ix  pode tomar valores do domínio id , não vazio. 

Consideremos agora o conjunto de restrições { }mccC ,,1 K=  sobre as variáveis X . Cada 

restrição ic  envolve um subconjunto 'X  de X , definindo as possíveis combinações de 

valores das variáveis em 'X . Se a cardinalidade do conjunto 'X  é 1 dizemos que a 
restrição é unária, e se a cardinalidade é 2 dizemos que a restrição é binária. Portanto, 
um CSP é um conjunto X  de variáveis, o respectivo domínio D , e um conjunto C  de 
restrições. 



É ainda importante definir o que é uma solução para o CSP. O estado do 
problema, é uma atribuição de valores a algumas (não necessariamente todas) variáveis. 

Como exemplo considere a atribuição { }jjii vxvx == , , onde kv  é um valor do domínio 

kd  atribuído à variável kx , para nk ≤≤1 . Uma atribuição é completa se todas as 

variáveis do problema têm valor atribuído (dizem-se instanciadas). Uma atribuição que 
satisfaz todas as restrições (não viola as restrições) diz-se consistente. Caso contrário, 
diz-se inconsistente. Uma solução para o CSP é uma atribuição complete e consistente. 
Um problema é satisfeito se existe pelo menos uma solução. Mais formalmente, se 
existe pelo menos um elemento do conjunto ndd ××K1  que é uma atribuição consistente. 

Um problema é não satisfeito se não tem solução. Mas formalmente, se todos os 
elementos do conjunto ndd ××K1  são atribuições inconsistentes. Resolver um problema 

de CSP é encontrar uma solução ou provar que nenhuma solução existe. 
Neste artigo utilizamos um CSP com domínios finitos. 
O Problema da Solvabilidade Proposicional (SAT) é um caso particular de um 

CSP onde as variáveis são booleanas. As restrições são definidas por uma fórmula do 
cálculo proposicional expressa na forma normal conjuntiva (CNF). 

 

2.2 Algoritmos de procura 

Os algoritmos de procura utilizados para resolver CSPs podem ser completos ou 
incompletos. Os algoritmos completos garantem que encontram uma solução, se pelo 
menos uma existir. Se não existir solução o algoritmo completo pode ser usado para o 
provar. A procura com retrocesso é um exemplo de um algoritmo completo. Os 
algoritmos incompletos não conseguem provar que um CSP não tem solução, mas são 
eficazes em encontrar uma solução, se pelo menos uma existir. A procura local é um 
exemplo de um algoritmo incompleto. 

Os algoritmos de procura com retrocesso fazem uma pesquisa na árvore de 
procura em profundidade-primeiro. Em cada nó da árvore é escolhida uma variável 
ainda não instanciada e o nó é expandido. A expansão de um nó consiste em criar vários 
ramos a partir desse nó. Cada ramo corresponde a atribuir à variável um dos valores 
possíveis do deu domínio. As restrições são usadas para verificar se as atribuições são 
consistentes. 

Em cada nó da árvore de procura é aplicada uma importante técnica de redução do 
espaço de procura, conhecida como propagação de restrições. Esta permite melhorar a 
eficiência do algoritmo mantendo consistência local. Esta técnica consegue retirar, 
durante a procura, valores inconsistentes dos domínios das variáveis, e assim, reduzir o 
espaço de procura. De notar ainda que as bastante importantes heurísticas para selecção 
de variáveis podem depender dos resultados do mecanismo de propagação de restrições. 
A heurística de selecção de variável baseada no princípio de falhar-primeiro é um 



exemplo. Em cada nó da árvore de procura esta heurística escolhe a variável que tem o 
domínio de menor tamanho (menor número de valores no domínio). Esta heurística é 
dinâmica, uma vez que o mecanismo de propagação de restrições, ao retirar valores 
inconsistentes dos domínios vai influenciar a escolha da próxima variável. 

 

3 Restarts 

3.1 Aleatorização 

A aleatorização é uma forma de tornar o algoritmo não–determinístico pela 
introdução de processos aleatórios. É essencial em muitos algoritmos de procura local 
para resolver problemas combinatórios difíceis [9, 10]. Muitos dos algoritmos de 
procura local reiniciam repetidamente a procura (restart) através da geração aleatória de 
atribuições completas. A aleatorização pode ainda ser utilizada para decidir entre 
diferentes estratégias de procura local [11].  

Um algoritmo completo de procura com retrocesso é aleatorizado pela introdução 
de uma determinada quantidade de aleatoriedade na heurística de decisão [12]. A 
quantidade de aleatorização pode afectar o valor que é escolhido para a variável e qual a 
variável que é escolhida, de entre as melhores, segundo o valor da heurística. 

A introdução de aleatoriedade na heurística de decisão torna pouco provável 
escolher a variável errada, o valor errado, no momento errado para a instância errada. A 
aleatorização ajuda a reduzir a probabilidade desta situação ocorrer.  

Embora intimamente ligada com a aleatoriedade da heurística de decisão, a 
aleatorização é um aspecto central das estratégias de restarts [12]. A aleatorização faz 
com que diferentes sub-árvores sejam pesquisadas sempre que é feito um restart ao 
algoritmo de procura. 

 

3.2 Heavy-tail 

Para muitos problemas combinatórios, diferentes algoritmos de procura completos 
podem exibir comportamentos bastante diferentes quando aplicados à mesma instância. 
Por exemplo, um algoritmo pode necessitar apenas de poucos segundos para concluir, 
enquanto outro pode precisar de horas. O mesmo pode acontecer para algoritmos de 
procura com retrocesso aleatorizados. Significa que para a mesma instância, diferentes 
execuções do algoritmo podem resultar em tempos de execução muito diferentes. 



 
Fig. 1. Exemplo de uma distribuição heavy-tail típica 

Esta imprevisibilidade no tempo de execução dos algoritmos de procura 
completos pode ser explicada pelo fenómeno da distribuição heavy-tail [13]. Isto 
significa que, aquando da execução do algoritmo de procura aleatorizado, existe uma 
probabilidade não negligenciada dessa execução necessitar exponencialmente mais 
tempo do que qualquer outra execução anterior. Isto faz com que o tempo médio das 
execuções do algoritmo aumente com o número de execuções, e no limite seja infinito 
[12]. 

A figura 1 mostra um exemplo de uma distribuição heavy-tail típica. A curva 
mostra a percentagem cumulativa de execuções com sucesso em função do número de 
retrocessos [14]. Este exemplo foi construído para uma instância de SAT particular, a 
partir de 10000 execuções de um algoritmo de procura com retrocesso aleatorizado. A 
distribuição heavy-tail é caracterizada por uma cauda longa. Neste exemplo concreto 
podemos observar que em 50% das execuções do algoritmo foi possível encontrar a 
solução com menos de (aproximadamente) 300 retrocessos (a parte esquerda da 
distribuição). No entanto 0.7% das execuções do algoritmo não conseguem encontrar 
solução ao fim de 10000 retrocessos, ou seja, necessita de mais tempo para encontrar a 
solução (a parte direita da distribuição). 

A variação dos tempos de execução de métodos de procura aleatorizados foi 
profundamente estudada por Gomes et al.[12, 14, 13]. 

 

3.3 Estratégias de restarts 

Uma possível estratégia de restarts consiste em definir um valor limite (cutoff) 
para o número de retrocessos do algoritmo. O algoritmo de procura com retrocesso 
aleatorizado é então executado repetidamente, limitando em cada execução o número 
máximo de retrocessos ao valor do cutoff. Na prática, um adequado valor de cutoff 
elimina o fenómeno heavy-tail. No entanto, esse valor só pode ser encontrado 
empiricamente. [12]. 



Se os restarts forem usados com um valor fixo de cutoff o algoritmo resultante não 
é completo. Embora o algoritmo resultante possa ter alguma probabilidade de resolver a 
instância, pode não ser capaz de provar que a instância não tem solução, é não satisfeita. 
A solução para este problema é incrementar o valor de cutoff [15]. Uma estratégia 
simples é incrementar o valor de cutoff por uma constante, a seguir a cada restarts. O 
algoritmo resultante é completo e portanto capaz de provar que uma instância é não 
satisfeita [4]. De notar que esta abordagem se assemelha à procura em profundidade 
primeira iterativa.  

No entanto, a estratégia de incrementar o cutoff tem uma desvantagem importante, 
uma vez que os caminhos da árvore de procura podem ser visitados mais do que uma 
vez, em diferentes restarts. Este problema foi abordado para SAT em [16], onde são 
registados nogoods, do último ramo da árvore de procura, antes do restarts. Mais 
recentemente a mesma ideia foi também aplicada a CSP [17, 18]. Este registo de 
nogoods é também conhecido como aprendizagem.  

Como referido recentemente em [19], o progresso impressionante dos algoritmos 
de SAT, aos contrário dos de CSP, deveu-se ao uso de restarts e do registo de nogoods 
(e ainda ao uso de estruturas de dados lazy eficientes). Este facto está a estimular o 
interesse da comunidade de CSPs em restarts e nogoods. 

 

4 Resultados experimentais 

Este secção apresenta e analisa os resultados experimentais do impacto dos 
restarts na resolução de várias instâncias do problema das n-rainhas. Em primeiro lugar 
começamos por definir o modelo usado para representar o problema da n-rainhas, e 
discutir a distribuição heavy-tail que este problema exibe. 

A implementação do modelo das n-rainhas e dos algoritmos usados no estudo 
empírico foi feita com o solver de programação por restrições em domínios finitos do 
sistema Comet (http://www.comet-online.org). 

 

4.1 O problema da n-rainhas 

O exemplo clássico usado para ilustrar o problema da satisfação de restrições é o 
problema das n-rainhas. O objectivo é colocar n rainhas num tabuleiro de Xadrez n×n 
tal que nenhuma rainha ataque outra. 

Uma possível formulação para o problema é a seguinte: considerar uma variável 
para cada coluna do tabuleiro x1, …, xn; o domínio das variáveis são as linhas onde as 
rainhas podem ser colocadas di={1, …, n}; e as restrições, para todos os possíveis pares 
de colunas (rainhas), são que as duas rainhas não podem partilhar a mesma linha nem as 
mesmas diagonais. Uma propriedade interessante desta formulação é que o número de 



variáveis é sempre o mesmo que o número de valores nos domínios. Esta é formulação 
utilizada para modelar o problema das n-rainhas. 

É usada a restrição global alldifferent para implementar as restrições do problema: 
─ todas as rainhas têm que ser colocadas em linhas diferentes alldifferent(x1, x2, 

…, xn) 
─ todas as rainhas têm que ser colocadas em diagonais diferentes 

alldifferent(x1+1, x2+2, …, xn+n) 
alldifferent(x1-1, x2-2, …, xn-n) 
 

4.2 Distribuição heavy-tail 

A distribuição heavy-tail da figura 2 foi criada com 872649 execuções de um 
algoritmo de procura com retrocesso aleatorizado para resolver o problema das 8-
rainhas. Este algoritmo não usa propagação de restrições nem heurísticas de decisão. 
Simplesmente selecciona a próxima variável de forma aleatória. 

 
Fig. 2. Distribuição heavy-tail para as 8-rainhas 

Como podemos observar, o problema das 8-rainhas tem uma distribuição heavy-
tail. Admitamos que podemos generalizar esta observação para todas as instâncias do 
problema das n-rainhas. Isto significa que o algoritmo de procura com retrocesso 
aleatorizado, utilizando uma estratégia de restarts, pode resolver todas as instâncias das 
n-rainhas. 

 

4.3 Restarts 

Nesta secção usamos como configuração base para todos os testes um algoritmo 
de procura com retrocesso, com propagação de restrições e uma heurística baseada no 
princípio de falhar-primeiro (FF). Para os resultados experimentais usámos os seguintes 
algoritmos: 



─ BT, algoritmo com a configuração base. 
─ BT+Rand, configuração base e escolha aleatória entre os possíveis valores da 

variável. 
─ BT+Rst, configuração base, escolha aleatória entre as variáveis com os três 

melhores valores (de acordo com a heurística FF), e restarts (valor inicial do cutoff 
é 1; o incremento do valor de cutoff a seguir a cada restart é 10). 

Os resultados de executar os algoritmos são expressos no número de retrocessos 
necessários para encontrar a solução. Para cada execução foi definido um limite de 
500000 retrocessos. Uma vez que foi utilizada aleatorização nos dois últimos 
algoritmos, eles foram executados 10 vezes para cada instância. Por isso, nestes casos, 
os resultados apresentados correspondem à média das 10 execuções.  

Tabela 1. Resultados para diferentes instâncias (com diferentes n rainhas) 

n BT BT+Rand BT+Rst 
100 29 58,8 84,2 
200 200217 35525,9 63,1 
500 (1) 5791,8 352,7 

1000 2 
103460,4 

(2) 846,2 

1500 4265 
100310,2 

(2) 2069,0 
2000 (1) 50003,6 (1) 857,2 

 
Na tabela 1, os valores entre parêntesis representam o número de vezes que o 

limite de retrocessos foi atingido (sem encontrar a solução) 
Como podemos observar os resultados da tabela 1 expõem o poder da utilização 

de restarts: 
─ Com restarts o algoritmo resolve todas as instâncias. 
─ Com restarts o algoritmo resolve as instâncias mais difíceis (maiores) de forma 

mais eficiente (necessita de menos retrocessos). 
─ Sem restarts os algoritmos apresentam tempos (retrocessos) de execução grandes, 

devido à distribuição heavy-tail. Mas, utilizando restarts, a longa cauda da 
distribuição heavy-tail é evitada.  
Com restarts é possível, de forma mais eficiente, encontrar a solução de instâncias 

mais difíceis. Provavelmente isto acontece porque as instâncias têm uma distribuição 
heavy-tail. 

 

4.4 Heurística baseada em conflitos 

Em SAT, as heurísticas de decisão mais importantes são baseadas no registo de 
cláusulas de conflito (registo de nogoods) [5]. A ideia geral destas heurísticas é 



incrementar o valor dos literais que estão envolvidos no conflito. A heurística 
selecciona a variável que está envolvida em mais conflitos. 

Implementamos uma heurística que utiliza um contador para cada variável. 
Quando o algoritmo não tem mais valores para atribuir a uma variável (conflito) o 
contador dessa variável é incrementado de uma unidade. Esta heurística selecciona a 
variável que esteve envolvida em mais conflitos, desempatando com a heurística FF. 

Tabela 2. Resultados para a heurística baseada em conflictos  

n BT+Rst BT+Rst+Conf 
100 84,2 30,9 
200 63,1 142,0 
500 352,7 126,2 
1000 846,2 197,8 
1500 2069,0 268,5 
2000 857,2 213,8 

 
O novo algoritmo testado, BT+Rst+Conf adiciona aos restarts a heurística 

baseada nos conflitos. Como pode ser observado, esta heurística permite melhorar, 
excepto num caso, o comportamento do algoritmo (diminui o número de retrocessos 
necessário para encontrar a solução para o algoritmo). Nestas instâncias, esta nova 
heurística é melhor que a tradicional heurística baseada no princípio de falhar-primeiro. 

Em [5] os contadores são periodicamente divididos por um valor constante, mas 
na nossa implementação não dividimos os contadores. Esta pode ser a razão que explica 
porque em algumas instâncias esta heurística tem um comportamento pior. No entanto 
esta heurística apresenta resultados promissores. 

 

5 Conclusões 

Este artigo apresenta um estudo preliminar sobre restarts aplicados a um CSP, as 
n-rainhas. Os restarts não têm sido considerados úteis para melhorar os algoritmos de 
procura com retrocesso para CSP, e por isso não são standard nestes algoritmos. Este 
estudo contribui para contradizer esta ideia, mostrando:  
─ Os restarts podem efectivamente melhorar o tempo de execução necessário para 

resolver o problema das n-rainhas. 
─ Uma heurística baseada em conflitos (e usando restarts) melhora ainda mais o 

tempo de execução necessário para resolver o problema das n-rainhas. 
Os restarts não substituem outras técnicas, como propagação de restrições e 

heurísticas, mas complementam-nas tornando os algoritmos mais eficientes. 



Os progressos em SAT foram devidos à utilização de restarts e nogoods. Agora 
em CSP os restarts e os nogoods começam a ser uma área de investigação bastante 
promissora. [19]. 

No futuro próximo esperamos: 
─ Confirmar os resultados com outras instâncias de CSPs (problemas reais e também 

gerados aleatoriamente). 
─ Incluir no estudo o registo de nogoods (aprendizagem). 
─ Estudar a interacção de outras técnicas com os Restarts. 
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